
Rosemary Monahan, NUIM
Joint work with Rustan Leino, MSR

JML Spec-a-thon, 19 November 2009

 experimental language

 sequential, object based (no subclassing)

 specifications in the style of dynamic frames

 coarse-grained frames (at the level of whole
objects, not individual memory locations)

 available as open source:
http://boogie.codeplex.com

http://boogie.codeplex.com/

Incremental Benchmarks for Software
Verification Tools and Techniques

Bruce W. Weide, Murali Sitaraman, Heather K.
Harton, Bruce Adcock, Paolo Bucci, Derek Bronis,
Wayne D. Heym, Jason Kirschenbaum, David
Frazier

{weide,adcockb,bucci,bronish,heym,kirschen}@cs
e.ohio-state.edu

{murali,hkeown,dfrazie}@cs.clemson.edu

“An initial catalogue of easy-to-state, relatively simple,
and incrementally more and more challenging benchmark
problems for the Verified Software Initiative.”

Their objectives:
 support assessment of verification tools
 support assessment of techniques to prove total

correctness of functionality software.
 evaluate the state-of-the art and the pace of progress

toward verified software in the near term
 allow researchers to illustrate and explain how proposed

tools and techniques deal with known pitfalls and well-
understood issues, as well as how they can be used to
discover and attack new ones.

 all formal specifications relevant to the
benchmark problem requirements
◦ including mathematical definitions, theories, and

similar artefacts developed for and/or used in the
specifications

 all code subjected to the verification process
 all verification conditions involved in the

verification process
 descriptions of the verification system proof

rules employed, tools used, and techniques
applied.

 involve both an automatic proof of total
correctness of a correct solution, and
evidence that the tools and techniques can
automatically detect that a “slightly” incorrect
solution is incorrect

 be modular

 be submitted formally to the VSI repository.

 See http://boogie.codeplex.com

 Go to the source code tab

 Browse the Boogie source code in the Test/
VSI Benchmarks folder

http://boogie.codeplex.com/
http://boogie.codeplex.com/

Problem Requirements:

 Verify an operation that adds two numbers by
repeated incrementing.

 Verify an operation that multiplies two
numbers by repeated addition, using the first
operation to do the addition. Make one
algorithm iterative, the other recursive.

 We don't consider overflow.

 We don't verify that the recursion terminates
– not supported in Dafny.

Problem Requirements:

 Verify an operation that uses binary search to
find a given entry in an array of entries that
are in sorted order.

In Dafny:

 Needed to implement arrays as Dafny does
not support them

 Overflow: could have overflow issues.

var mid := low + (high - low) / 2;

 Fixed a bug in the well-formedness of
functions. In particular, it didn't look at the
requires clause (in the proper way).

 Needed to Implement arrays as Dafny does
not provide them

Problem Requirements:

 Specify a user-defined FIFO queue ADT that is
generic (i.e., parameterized by the type of
entries in a queue).

 Verify an operation that uses this component
to sort the entries in a queue into some
client-defined order.

In Dafny:
 We used integers instead of a generic

Comparable type
◦ because Dafny has no way of saying that the

Comparable type's AtMost function is total and
transitive.

 To prove properties of sequences in Dafny we
needed
◦ to supply two lemmas to assist the verifier
◦ a complicated assignment to pperm
◦ to write invariants over p & perm rather than pperm
◦ couldn’t use “x in p”

 We used integers instead of a generic Comparable
type, because Dafny has no way of saying that the
Comparable type's AtMost function is total and
transitive.

 Tried changing the queue to be generic i.e.
Queue<T> . This won’t verify as when we
instantiate the queue <int> the translation process
generates errors.

 Would need to pass in the type, the comparison
operator and specify the transitive and reflective
properties if we were to make this method more
generic

 Notation: we couldn't use "x in p".

 We couldn't get things to work out if we used the
Get method. Instead, we used .contents.

 Due to infelicities of the Dafny sequence treatment,
we needed to supply two lemmas, do a complicated
assignment of pperm, had to write invariants over
p and perm rather than pperm

 Ghost variables would be nice e.g. pperm is a spec
only variable but we cant mark it so.

Problem Requirements:

 Verify an implementation of a generic map
ADT, where the data representation is layered
on other built-in types and/or ADTs.

 Used sequences of Keys and Values using
indices into these sequences to define the
mapping

 Used built-in equality to compare keys

 Can we make this more efficient?

Problem Requirements:

Verify an implementation of the queue type

specified for benchmark #3, using a linked

data structure for the representation.

In Dafny:

Implemented as a set of Node<T>

Problem Requirements:

 Verify a client program that uses an iterator for
some collection type, as well as an
implementation of the iterator.

In Dafny:

 Wrote a collection class as a seq<int>

 Wrote an iterator class

 Used the iterator to iterate over the collection,
storing the elements in a new sequence and
verified that the iterator returns the correct
things

 Does the iterator destroy the structure that it
iterates over? Not in our case.

 Could make this harder by requiring the
specification and implementation to catch
errors if we
◦ iterate with one iterator, change the collection and

iterate again

◦ have two iterators on the same collection

Problem Requirements:

 Specify simple input and output capabilities
such as character input streams and output
streams

 Verify an application program that uses them
in conjunction with one of the components
from the earlier benchmarks.

 Implemented a stream as a seq<int>
 Methods to :

◦ Create a stream from writing
◦ Open a stream for reading
◦ PutChar to write a “Char”// int
◦ GetChar to read a “Char”// int
◦ Check if AtEndOfStream
◦ Close a stream

 Client program reads in characters, stores
then on Queue (from BM3), sorts them and
writes them to a stream

◦ We assume finite streams.

◦ If we are required to prove termination then we
would need someway of signalling the end of
stream

◦ What else can we specify? We use the input
sequence, sorting and the output sequence
correctly but we say nothing about the output that
we produce.

Problem Requirements:
 Verify an application program with a concisely stated

set of requirements, where the particular solution
relies on integration of at least a few of the previous
benchmarks.

 For example, verify an application program that does
the following:
Given input containing a series (in arbitrary order) of
terms and their definitions, output an HTML glossary
that presents all the terms and their definitions, with
(a) the terms in alphabetical order, and (b) a hyperlink
from each term that occurs in any definition to that
term’s location in the glossary.

 A dictionary is a mapping between words and
sequences of words

 To set up the dictionary in main we will read a
stream of words and put them into the
mapping - the first element of the stream is
the term, the following words (until we read
null) form the terms definition. Then the
stream provides the next term etc.

 Use the sort method (defined on queue) to
sort the words into alphabetical order

 The Dafny call statement now automatically
declares left-hand sides as local variables, if
they were not already local variables.

 Introduced operator !in in Dafny. An
expression "x !in S" is equivalent to "!(x in S)".

 Redesigned the encoding of Dafny generics,
including the built-in types set and seq (see
Boogie/Binaries/DafnyPrelude.bpl)

 Added a sequence update expression

 Add multisets...

 A valuable exercise!
 Explores the strengths and weaknesses of

tools/languages.
 Helps in improving syntax and in determining

what language features need to be supported.
 Highlights issues with verification e.g.

Translation/triggering.
 Provides a mechanism for the comparison of

languages and tools.
 Should lead to improved benchmarks for

verification tools.

