Verified Software Initiative
Benchmarks in Dafny

Rosemary Monahan, NUIM
Joint work with Rustan Leino, MSR

JML Spec-a-thon, 19 November 2009




Dafny

» experimental language
» sequential, object based (no subclassing)
» specifications in the style of dynamic frames

» coarse—grained frames (at the level of whole
objects, not individual memory locations)

» available as open source:



http://boogie.codeplex.com/

Motivation from VSTTE 2008:

Incremental Benchmarks for Software
Verification Tools and Techniques

Bruce W. Weide, Murali Sitaraman, Heather K.
Harton, Bruce Adcock, Paolo Bucci, Derek Bronis,
Wayne D. Heym, Jason Kirschenbaum, David

Frazier

{weide,adcockb,bucci,bronish,heym,kirschen}@cs
e.ohio-state.edu

{murali,hkeown,dfrazie}@cs.clemson.edu



The Benchmarks

“An initial catalogue of easy-to-state, relatively simple,
and incrementally more and more challenging benchmark
problems for the Verified Software Initiative.”

Their objectives:
» support assessment of verification tools

» support assessment of techniques to prove total
correctness of functionality software.

» evaluate the state-of-the art and the pace of progress
toward verified software in the near term

» allow researchers to illustrate and explain how proposed
tools and techniques deal with known pitfalls and well-
understood issues, as well as how they can be used to
discover and attack new ones.




Proposed solutions should include:

» all formal specifications relevant to the
benchmark problem requirements

> including mathematical definitions, theories, and
similar artefacts developed for and/or used in the
specifications

» all code subjected to the verification process

» all verification conditions involved in the
verification process

» descriptions of the verification system proof
rules employed, tools used, and techniques
applied.




The proposed solution should:

» involve both an automatic proof of total

correctness of a correct so
evidence that the tools anc
automatically detect that a
solution is incorrect

» be modular

ution, and
techniques can
“slightly” incorrect

» be submitted formally to the VSI repository.




Our attempts in Dafny

» See http://boogie.codeplex.com
» Go to the source code tab

» Browse the Boogie source code in the Test/
VSI Benchmarks folder



http://boogie.codeplex.com/
http://boogie.codeplex.com/

Benchmark #1: Adding and
Multiplying Numbers

Problem Requirements:

» Verify an operation that adds two numbers by
repeated incrementing.

» Verify an operation that multiplies two
numbers by repeated addition, using the first
operation to do the addition. Make one
algorithm iterative, the other recursive.




Comments:

» We don't consider overflow.

» We don't verify that the recursion terminates
- not supported in Dafny.

p—



Benchmark #2:
Binary Search in an Array

Problem Requirements:

» Verify an operation that uses binary search to
find a given entry in an array of entries that
are in sorted order.

In Dafny:
» Needed to implement arrays as Dafny does
not support them




Comments:

» Overflow: could have overflow issues.
var mid := low + (high - low) / 2;

» Fixed a bug in the well-formedness of
functions. In particular, it didn't look at the
requires clause (in the proper way).

» Needed to Implement arrays as Dafny does
not provide them




Benchmark #3: Sorting a Queue

Problem Requirements:

» Specify a user-defined FIFO queue ADT that is
generic (i.e., parameterized by the type of
entries in a queue).

» Verify an operation that uses this component
to sort the entries in a queue into some
client-defined order.




Benchmark #3: Sorting a Queue

In Dafny:

» We used integers instead of a generic
Comparable type

- because Dafny has no way of saying that the

Comparable type's AtMost function is total and
transitive.

» To prove properties of sequences in Dafny we
needed

> to supply two lemmas to assist the verifier
- a complicated assignment to pperm

> to write invariants over p & perm rather than pperm
> couldn’tuse “x in p”




Comments

>

We used integers instead of a generic Comparable
type, because Dafny has no way of saying that the
Comparable type's AtMost function is total and
transitive.

Tried changing the queue to be generic i.e.
Queue<T> . This won’t verify as when we
instantiate the queue <int> the translation process
generates errors.

Would need to pass in the type, the comparison
operator and specify the transitive and reflective

properties if we were to make this method more
generic




Comments:

» Notation: we couldn't use "x in p".

» We couldn't get things to work out if we used the
Get method. Instead, we used .contents.

» Due to infelicities of the Dafny sequence treatment,
we needed to supply two lemmas, do a complicated
assignment of pperm, had to write invariants over
p and perm rather than pperm

» Ghost variables would be nice e.g. pperm is a spec
only variable but we cant mark it so.




Benchmark #4: Layered
Implementation of a Map ADT
Problem Requirements:

» Verify an implementation of a generic map
ADT, where the data representation is layered
on other built-in types and/or ADTs.

-



Comments:

» Used sequences of Keys and Values using
indices into these sequences to define the

mapping
» Used built-in equality to compare keys
» Can we make this more efficient?




Benchmark #5: Linked-List
Implementation of a Queue ADT

Problem Requirements:

Verify an implementation of the queue type
specified for benchmark #3, using a linked
data structure for the representation.

In Dafny:
Implemented as a set of Node<T>




Benchmark #6: Iterators

Problem Requirements:

» Verify a client program that uses an iterator for
some collection type, as well as an
implementation of the iterator.

In Dafny:
» Wrote a collection class as a seg<int>
» Wrote an iterator class

» Used the iterator to iterate over the collection,
storing the elements in a new sequence and
verified that the iterator returns the correct

things




Comments:

» Does the iterator destroy the structure that it
iterates over? Not in our case.

» Could make this harder by requiring the
specification and implementation to catch
errors if we
> iterate with one iterator, change the collection and

iterate again
> have two iterators on the same collection




Benchmark #7:
Input/OQutput Streams

Problem Requirements:

» Specify simple input and output capabilities
such as character input streams and output
streams

» Verify an application program that uses them

in conjunction with one of the components
from the earlier benchmarks.




Comments:

» Implemented a stream as a seg<int>

» Methods to :
> Create a stream from writing
> Open a stream for reading
> PutChar to write a “Char”// int
> GetChar to read a “Char”// int
> Check if AtEndOfStream
> Close a stream
» Client program reads in characters, stores
then on Queue (from BM3), sorts them and

writes them to a stream




Comments:

- We assume finite streams.

- |If we are required to prove termination then we
would need someway of signalling the end of
stream

- What else can we specify? We use the input
sequence, sorting and the output sequence
correctly but we say nothing about the output that
we produce.




Benchmark #8:
An Integrated Application

Problem Requirements:

» Verify an application program with a concisely stated
set of requirements, where the particular solution
relies on integration of at least a few of the previous
benchmarks.

» For example, verify an application program that does
the following:
Given input containing a series (in arbitrary order) of
terms and their definitions, output an HTML glossary
that presents all the terms and their definitions, with

(a) the terms in alphabetical order, and (b) a hyperlink
from each term that occurs in any definition to that
term’s location in the glossary.




Our Example:

» A dictionary is a mapping between words and
sequences of words

» To set up the dictionary in main we will read a
stream of words and put them into the
mapping - the first element of the stream is
the term, the following words (until we read
null) form the terms definition. Then the
stream provides the next term etc.

» Use the sort method (defined on queue) to
sort the words into alphabetical order




Some other Improvements...

» The Dafny call statement now automatically
declares left-hand sides as local variables, if
they were not already local variables.

» Introduced operator lin in Dafny. An
expression "X lin S" is equivalent to "I(x in S)".
» Redesigned the encoding of Dafny generics,

including the built-in types set and seq (see
Boogie/Binaries/DafnyPrelude.bpl)

» Added a sequence update expression
» Add multisets...




Conclusions:

» A valuable exercise!

» Explores the strengths and weaknesses of
tools/languages.

» Helps in improving syntax and in determining
what language features need to be supported.

» Highlights issues with verification e.q.
Translation/triggering.

» Provides a mechanism for the comparison of
languages and tools.

» Should lead to improved benchmarks for
verification tools.




