
OpenJMLUnit:
Improvements to JMLUnit

A Preview

Daniel M. Zimmerman
Institute of Technology

University of Washington Tacoma

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs... not much to do about this one but
write better specs—that’s why we’re here!

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs... not much to do about this one but
write better specs—that’s why we’re here!

• You need to create test data, and
sometimes extra code, and place it in
various parts of the generated test files.

JMLUnit
• JMLUnit is an excellent tool, but has several

shortcomings:

• Generated tests are only as good as the
specs... not much to do about this one but
write better specs—that’s why we’re here!

• You need to create test data, and
sometimes extra code, and place it in
various parts of the generated test files.

• It can use extreme amounts of memory
very, very easily.

Consider A Trivial Class
public class Add
{
 //@ invariant sum() > 0;

 private int my_x;
 private int my_y;

 //@ requires the_x > 0;
 //@ requires the_y > 0;
 //@ ensures x() == the_x;
 //@ ensures y() == the_y;
 public Add(final int the_x, final int the_y)
 {
 my_x = the_x;
 my_y = the_y;
 }

 public /*@ pure @*/ int x() { return my_x; }
 public /*@ pure @*/ int y() { return my_y; }

 //@ ensures \result == x() + y() + the_operand;
 public /*@ pure @*/ int sum(final int the_operand)
 {
 return my_x + my_y + the_operand;
 }
}

Test Generation with
JMLUnit

• Running JMLUnit creates 2 Java classes.

• One (the unit tests) you leave alone.

• The other is the unit test data... it’s 162
lines long, and the two places you need to
edit are on lines 122 and 154.

• If you want to generate different sets of
integers for different parameters, you need
to write code.

Test Generation with
OpenJMLUnit

• Running OpenJMLUnit will also create 2 Java
classes.

• One (the unit tests) you leave alone.

• The other is the unit test data... at the
very top of the class you fill in sets of test
data for every context.

• You can specify separate data sets for each
parameter of each method, and also for
each necessary data type globally.

Another Improvement:
Objects To Test

• JMLUnit does not automatically construct
objects for you to test (though it does test
constructors)—you have to decide on them
yourself.

• OpenJMLUnit can automatically use the test
data you specify for the constructor to
construct objects for testing the other
methods... and you can add more yourself.

Memory Considerations

• JMLUnit uses very large amounts of memory
for large test sets, because it constructs all
the JUnit tests before feeding them to JUnit
to run.

• New JMLUnit will use TestNG’s support for
parameterized tests with iterators to lazily
provide test cases and eliminate the need to
construct them all in memory first.

Memory Considerations

• A year or so ago, Joe and I wanted to try a
test data selection method we came up with
on the KOA counting system.

• We added our test data to JMLUnit and ran
it on a 3GHz 8-core server with 16GB of
heap for over a month.

• It never finished or gave us any output—it
spent all its time garbage collecting!

• Hopefully OpenJMLUnit can do better!

Current Status

• An interim piece of software, JMLUnitNG, is
currently under development by M.S. student
Rinkesh Nagmoti.

• Still using JML2.

• Maybe I’ll get to demo it this week...

• I will begin working on OpenJMLUnit soon.

