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Abstract. Designing unit test suites for object-oriented systems is a
painstaking, repetitive, and error-prone task, and significant research has
been devoted to the automatic generation of test suites. One method for
generating unit tests is to use formal class and method specifications as
test oracles and automatically run them with developer-provided data
values; for Java code with formal specifications written in the Java Mod-
eling Language, this method is embodied in the JMLUnit tool and the
JUnit testing framework on which it is based. While JMLUnit can pro-
vide reasonable test coverage when used by a skilled developer, it suffers
from several shortcomings including excessive memory utilization during
testing and the need to manually write significant amounts of code to
generate non-primitive test data objects. In this paper we describe JML-
UnitNG, a TestNG-based successor to JMLUnit that can automatically
generate and execute millions of tests, using supplied test data of only
primitive types, without consuming excessive amounts of memory. We
also present a comparison of test coverage between JMLUnitNG and the
original JMLUnit.

1 Introduction

Unit testing has been an important validation technique in software development
processes for many years. In a typical unit testing process, a developer designs a
set (or suite) of unit tests and runs them on the system under test (SUT). Each
individual unit test is designed to demonstrate that some subset of the software
(the unit being tested) performs appropriate actions and generates appropriate
outputs given particular inputs and a particular starting state. The existence
of a comprehensive unit test suite provides evidence for the stability, reliability,
and security of the system, though it cannot guarantee the system’s correctness.

Unfortunately, designing test suites is a painstaking, repetitive, and error-
prone task, especially for large, complex software systems. Test developers can
easily overlook critical situations that need testing or develop a test suite with
poor coverage—that is, one that tests an insufficient fraction of a system’s code
or functionality. Moreover, the manual development and maintenance of test
suites (regardless of quality) represents a significant portion of the development
and maintenance costs for a complex software project.



To address both the coverage and cost issues, there has been significant re-
search effort devoted to the automatic generation of high-coverage unit test suites
using techniques ranging from purely random test generation to the use of sym-
bolic execution to find critical execution paths. While some of these techniques
can provide reasonable test coverage at low cost, they all have various limitations
and have seen little adoption by software developers.

This work focuses on improving one particular unit test generation technique
that has been adopted by developers who use the Java Modeling Language (JML)
to specify their software systems, namely the specification-based test genera-
tion embodied in the JMLUnit tool and the JUnit testing framework on which
it is based. After providing some background information about unit testing,
JML, and JMLUnit, we describe the limitations of JMLUnit for testing complex
systems. We then address these limitations with JMLUnitNG, a successor to
JMLUnit based on the TestNG testing framework. Finally, we demonstrate our
improvements using coverage results from tests generated by both JMLUnit and
JMLUnitNG. The goals of this work are to make automated unit test generation
for JML-annotated Java programs more effective and easier for developers and,
more importantly, to provide a platform upon which to conduct experiments
with new test data generation techniques that are currently under development.

2 Background

2.1 Unit Testing

Unit testing is, essentially, the execution of individual components of a system
(the units) in specific contexts to see whether they generate expected results. A
single unit test has two main parts: the test data, which are the actual values
for software entities such as method parameters that will be used to set up the
state of the unit under test, and the test oracle, which is a piece of code that
determines whether the behavior of the unit is “correct” when it is set up with
the test data and executed. A given SUT typically requires many unit tests,
which are collectively called a test suite. The quality, or coverage, of a particular
test suite can be measured in several ways [16]; for example, code coverage is the
percentage of the executable code in the SUT that is actually executed when
running the test suite.

The simplest way to create unit tests is to rely on human judgment: a devel-
oper sits down with a piece of software, decides what test data should be used
and how to determine whether each test has passed or failed, and encodes this
information manually. Despite the fact that many techniques for automated test
data and test oracle generation have been developed over the last several years,
most unit test generation is still done by hand, even in large systems. For exam-
ple, the open-source Eclipse Development Platform1 contains several thousand
hand-written unit tests.

1 http://www.eclipse.org/
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There are several ways to generate both test data and test oracles automat-
ically. One such way, the focus of this work, is embodied in the JMLUnit tool
(described in Section 2.3); we will briefly describe some others in Section 6.

2.2 The Java Modeling Language

The Java Modeling Language (JML) [13] is a specification language for Java
programs. It supports class and method contracts in a Design by Contract [14]
style, as well as more sophisticated properties up to and including full math-
ematical models of program behavior. Several tools work with JML, including
compilers, static checkers, test generators, and specification generators [6].

The Common JML tool suite is the original, and still most widely used, set
of JML tools. It supports Java language versions up to 1.4 and includes a type
checker (jml), a compiler (jmlc) that compiles JML annotations into runtime
checks, a runtime assertion checker (jmlrac), a version of Javadoc (jmldoc)
that generates documentation including JML specifications, and a unit testing
framework (JMLUnit, described below).

Support for modern Java (1.5 and later) syntax in JML—including generic
types, enhanced for loops, and annotations—is currently being developed in
OpenJML,2 based on the current OpenJDK3 codebase, and JMLEclipse,4 based
on the Eclipse Development Platform.

2.3 JMLUnit

JMLUnit [7] is a unit testing framework for JML-annotated code. It takes ad-
vantage of JML runtime assertion checking (hereafter, RAC ) to enable the au-
tomatic construction of test oracles that classify tests into three categories: suc-
cessful (or passed), unsuccessful (or failed), and meaningless. Successful and
unsuccessful tests are familiar concepts to developers experienced in unit test-
ing. In the JMLUnit context, a successful test is one where a method is called
and no RAC errors occur; this means that the method conforms to its specifi-
cation with respect to that call. An unsuccessful test is one where a method is
called with its precondition satisfied and a RAC error occurs; this means that
the method does not conform to its specification, because once its precondition
has been satisfied it must execute correctly without violating any assertions.

Meaningless tests, on the other hand, are not likely to be familiar to most
unit testing practitioners. In the context of JMLUnit, a meaningless test is one
where a method is called without its precondition satisfied, causing a RAC error
before the method is executed. In JML (and other Design by Contract-based
specification techniques), a method call is explicitly permitted to generate any
result whatsoever when it is called without its precondition satisfied, ranging
from an unchanged system state to a catastrophic system failure. Since any

2 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
3 http://openjdk.java.net/
4 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/JmlEclipse/
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result of such a test must be acceptable by definition, there is no way for such
a test to fail; a test that cannot fail gives no useful information and is therefore
meaningless.

Of course, test oracles generated from the JML specifications present in the
SUT are necessarily limited by the scope of those specifications. Some JML spec-
ifications are not executable, so the runtime checker cannot catch all possible
specification violations (though the range of violations it can catch is extensive).
The more detailed and precise executable specifications exist for a method, the
better the ability of the generated test oracles to discern the correctness of that
method. Methods or classes with no executable specifications—that is, with only
informal specifications or with formal specifications that cannot be checked at
runtime—cannot be effectively tested using such test oracles. However, the prob-
lem of writing good executable class and method specifications, while extremely
important, is beyond the scope of this work; we proceed under the assumption
that good executable specifications are present in at least a reasonable fraction
of any system we intend to test.

In addition to constructing a test oracle for every method in the SUT, JML-
Unit also constructs a limited set of test data for each method. It uses a default
set of values for each primitive type in the Java language as well as the String

type, which it treats as a primitive type for testing purposes. For example, the
default set of values for the int type is {-1, 0, 1} and the default set of values
for the String type is {null, ""} ("" is the empty string). JMLUnit allows the
developer to augment these default sets with additional values; the test code it
generates has a clearly delineated “test data supply section” where the devel-
oper can specify data values to be used in addition to the defaults. Typically,
JMLUnit generates two test classes (one containing the test oracles and one con-
taining the test data) per class under test; however, there is also an option to
relegate the test data for all classes under test to a single “test data generator”
class. JMLUnit does no automatic test data generation for non-primitive types,
relying solely on the developer to write the code that generates such test data.

The tests generated by JMLUnit are executable by JUnit,5 one of the first and
most widely used automated test execution frameworks for Java-based systems.
They exhaustively use all combinations of the generated test data as parameters
to each method under test. For example, consider method m in Figure 1, which
takes one int parameter and one String parameter. JMLUnit has 3 default int
values and 2 default String values, so m will be called 6 times during testing if
only default values are used. If the default values are augmented with i additional
int values and s additional String values, m will be called (3 + i)(2 + s) times.

JMLUnit includes a custom JUnit test runner (jml-junit) that provides
detailed reporting of test results and correctly handles meaningless tests; JUnit
itself has no integrated concept of meaningless tests. The JUnit framework is
also integrated into the Eclipse IDE and JMLUnit tests can be run directly from
inside Eclipse, though doing so causes meaningless tests to be reported as passed
tests and the test results to be reported with less detail.

5 http://www.junit.org/
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public class Exemplar {

public Exemplar(String s0, String s1, String s2, String s3,

byte b, char c, Other o, Thing t) {

// constructor body omitted

}

public int m(int one, String two) {

// method body omitted

}

}

Fig. 1. An exemplar of a Java class skeleton.

3 Shortcomings of JMLUnit

In the hands of a skilled developer, JMLUnit can generate tests with good cov-
erage; however, it has several limitations that make it somewhat impractical to
use for large, complex systems. One of these is that it does not attempt to au-
tomatically generate non-primitive test data, leaving that task entirely to the
developer. This requires the developer to manually write methods that return
specific test objects in response to specific requests. In its generated test classes,
JMLUnit provides skeletons for these methods, which are intended to return
specific test data objects indexed by integers.

Consider class Exemplar in Figure 1, which has a constructor with the same
signature as one we used in our experiments. When JMLUnit generates tests
for the Exemplar constructor, it creates a method to provide objects of class
Thing for the last constructor parameter. The developer must fill in the body of
that method so that, whenever JMLUnit requests the Thing with index n, the
method returns whatever the developer has decided the nth Thing should be. In
most cases, it is important that the test object be a fresh copy, because the order
in which tests are run is not known a priori and reuse of test objects can cause
test results to unintentionally depend on the order in which the tests are run.
Similarly, it is important that the test objects be constructed deterministically,
because otherwise the test results might vary across test runs even if nothing
in the SUT has changed. This leads to an implementation style where data
generation methods are large switch statements, with the developer writing
code in each case of the switch statement to generate a single test object; in
fact, the skeleton code generated by JMLUnit is exactly such a switch statement
with a default case that generates no test data. Such code requires considerable
developer effort both to write and to maintain.

In addition to requiring data generation methods as above, JMLUnit does not
provide a reasonable way to specify distinct test data sets for distinct contexts.
For the Exemplar above, JMLUnit generates and provides extension points for
String, char and byte data sets, as well as providing extension points for the
developer to generate data for Other and Thing; however, it only provides one
such data set and extension point for each type. Thus, if the 4 String parame-



ters s0 . . . s3 have significantly different requirements (e.g., s0 must be parsable
as a number while s2 must be a capitalized last name with certain length re-
strictions), the developer must add test data to the single String data set that
satisfies all these requirements. This results in many meaningless tests where
numeric strings are used as names and vice-versa.

The most critical shortcoming of JMLUnit, however, is its memory utiliza-
tion. Since it relies on JUnit as its execution engine, JMLUnit must construct an
entire JUnit test suite in memory, including all the test data to be used, before
a single test is run. As described above, JMLUnit exhaustively tests all com-
binations of the generated test data for each method under test; thus, a single
method that takes multiple parameters can result in extremely large numbers of
tests. For the Exemplar constructor, if the developer gives no additional values
beyond the default sets for the primitive types and String and generates 2 test
objects for each of the Other and Thing types, JMLUnit generates a total of
384 tests. However, in a more realistic scenario where the developer adds, e.g., 3
char values, 2 byte values, and 2 String values to the default sets and generates
4 test objects for each of the object types, JMLUnit generates 102,400 tests.

The combinatorial explosion caused by adding additional test values is not
problematic in itself; each of those 102,400 tests would execute quite quickly on
any modern machine. However, the fact that JMLUnit is forced to construct
the entire test suite in memory before executing the tests is a serious problem,
because it makes such test suites completely impractical to execute even on
extremely capable hardware. We attempted to run such a test suite for a case
study (described in Section 5) on our test machine, an Apple Xserve with two
3.0GHz quad-core Xeon processors and 18GB of memory; even allowing the Java
virtual machine to use 16GB of heap space, we found that it exhausted available
memory before giving the results of a single test.

4 JMLUnitNG: Improvements to JMLUnit

In order to test more complex systems with less developer intervention, we have
created a new tool called JMLUnitNG. The new tool addresses the shortcomings
described in the previous section while preserving most of the basic operating
principles of the original JMLUnit.

4.1 Test Data Generation

The first shortcoming we address is the lack of non-primitive test data gener-
ation. To test Exemplar, we need test data of class Thing. Thing has at least
one constructor, either the default no-argument constructor provided by Java in
the absence of any constructor code or an explicit constructor that takes zero or
more parameters.

If Thing has a default constructor, we can construct Things by using that
default constructor. If Thing has explicit constructors, tests will be generated for
each of them when we generate tests for class Thing itself; thus, construction of a



number of Things will necessarily be attempted as part of the testing process. We
can use the Thing constructors and their test data to generate Things for use as
test data in other contexts; if there are k tests generated for Thing constructors,
that gives us at most k Things for testing other (non-constructor) methods of
Thing and methods of other classes under test that take Thing parameters. We
have at most k instances, rather than exactly k instances, because some of the
constructor tests may be meaningless or may fail; such tests do not result in the
creation of Things suitable for further testing.

We use Java reflection to generate these instances. Like JMLUnit, JML-
UnitNG generates two classes—one containing test oracles and another contain-
ing test data—per class under test. In each test data class, JMLUnitNG creates
an inner class that iterates over the instances that are successfully created during
constructor tests. When we run JMLUnitNG on class Exemplar, which takes a
Thing as a constructor parameter, JMLUnitNG inserts code into the test data
class for Exemplar that uses Java reflection to search for the test data class
for Thing. Later, when running the tests on Exemplar, JMLUnitNG can then
find the test data class for Thing (if it exists on the classpath) and use it to
obtain Things for testing. The developer can also directly specify Things, as in
the original JMLUnit. If JMLUnitNG finds the test data class for Thing when
the tests are run, and reflective test object generation is enabled, the generated
Things are used in addition to the developer-specified Things; if not, only the
developer-specified Things are used.

There are three main issues that arise when using reflection and constructor
test cases to generate test data. The first issue is that it is possible to have cyclic
dependencies; for example, a constructor (not necessarily the only constructor) of
class X takes a parameter of class Y and a constructor (again, not necessarily the
only one) of class Y takes a parameter of class X. This issue can be addressed in a
straightforward, though perhaps not optimal, way: use cycle detection flags when
instantiating objects, such that if an instance of X is requested when another
instance of X is already in the process of being generated, the cycle is detected
and stopped by providing a default (that is, generated by a default constructor)
or developer-specified instance of X instead of dynamically constructing one from
test data.

The second issue is that constructing test data using reflection does not take
polymorphism into account. For example, given a method on a chessboard class
that takes a Piece as a parameter, JMLUnitNG will attempt to generate Piece

objects but will not attempt to generate, e.g., Bishop or Knight objects even if
those classes extend Piece and have test data generators. This issue is difficult to
address in the general case, such as when determining what types to generate for
a method that takes an Object as a parameter. It can be addressed for certain
classes, e.g., the Java Collections Framework, with simple test data generation
rules (such as “generate an ArrayList where a List is required”). It can also be
addressed for specific test scenarios by analyzing the inheritance relationships
during test generation for only the classes under test; then, given a method with
a parameter of type Piece, the subtypes of Piece that are explicitly under test



would be generated as test data for the method while the subtypes of Piece

that are not under test would not be.
The third issue is that constructing test data reflectively does not account

for interrelationships among classes under test. For example, Exemplar takes
instances of Other and Thing as parameters; suppose it requires that the Other

and Thing passed to it be related to each other in a specific way (such as shar-
ing an identification number or other such attribute). In that case, reflectively
constructing the Other and Thing to pass to the Exemplar constructor will not
establish that relationship. However, this is an issue that is also encountered in
developer-designed test data, where complicated setup operations may be neces-
sary; therefore, we accept it as a limitation of the reflective test data generation
approach.

We will show in Section 5 that, despite these issues, the use of reflection to
generate test data objects from primitive types provides a significant improve-
ment in automatic test coverage over the original JMLUnit.

4.2 Context-Dependent Test Data

The second shortcoming we address is the lack of context-dependent test data.
As previously mentioned, JMLUnit provides default sets of data for primitive
types, and extension points for the developer to specify additional data values
for primitive types as well as data for non-primitive types. However, it only
provides one such extension point per type, per class under test. Though the
extension points do allow some flexibility—they take a parameter to designate
how far nested a loop is in which a type is being used, for example—they do not
allow a developer to specify specific sets of data to be used in specific contexts.

The main reason to specify sets of data for specific contexts is to help contain
the combinatorial explosion of tests. If two of the String parameters to the
Exemplar constructor are names, and the other two must be parsed as numbers
or other reference codes, using the same set of Strings for all 4 parameters will
result in many meaningless tests. Specifying a set of Strings for the names and
another set of Strings for the numbers/reference codes allows the developer to
reduce the number of meaningless tests, and thus reduce the time it takes to run
the test suite.

JMLUnitNG provides extension points for the developer to specify an indi-
vidual set of test data for each parameter of each method under test. These ex-
tension points have data types and method signatures embedded in their names
to uniquely associate each with a context; for example, method Exemplar.m(),
declared as int m(int one, String two), would have extension points with
names like int one m int String (int data to be used for the one parameter
of the method with signature m(int, String)) in the generated test class. For
non-primitive types, these extension points invoke the reflective data generation
code described earlier by default.

In addition to these extension points, JMLUnitNG also provides “global”
extension points that allow the developer to add test data for all occurrences
of a given type, as in the original JMLUnit; such global extension points have



names like char for all. The test data that is actually used at runtime for
a given method parameter consists of the default test data set generated by
JMLUnitNG, the global test data set associated with the data type, and the
test data set associated specifically with that method parameter.

The addition of custom test data sets for individual method parameters al-
lows developers to fine-tune their test suites and to easily integrate data from
external test data generators into the system.

4.3 Iterators and Lazy Test Generation

The third shortcoming we address is JMLUnit’s excessive memory utilization.
There are two main causes of memory utilization when running automated tests:
the need to generate all the tests in a test suite before executing the suite, and the
recording of information about executed tests using in-memory data structures.

Since the tests generated by JMLUnit are extremely repetitive—each method
is called many times, with parameter lists generated by taking the cross product
of the test data sets for its parameter types—an ideal way to execute them
would be to lazily generate the parameter lists as they are needed, rather than
marshaling the parameter lists for all the individual method calls in memory
as part of setting up the test suite. Unfortunately, the JUnit test execution
engine does not support lazy parameter list generation. While it does have the
ability to run parameterized tests, where a single test method is run repeatedly
with multiple parameter lists, it requires the parameter lists to be stored in a
two-dimensional array in memory; this makes it impossible to save memory by
parameterizing the tests.

In order to enable lazy parameter list generation, we replace the underly-
ing JUnit engine used by JMLUnit with TestNG,6 a Java-based test execution
engine that is similar in concept to JUnit but has a different feature set. Like
JUnit, TestNG supports the use of arrays as data sources for parameterized test
methods; however, it also supports the use of iterators for this purpose. When
it encounters a test method that uses an iterator as a data source, it executes
the test method with parameter lists provided by the iterator until the iterator
is empty. This allows us to implement lazy parameter list generation; by us-
ing iterators over primitive test data sets and the previously-discussed iterators
that generate test objects of non-primitive types, we can create combined itera-
tors that generate parameter lists for test methods while only keeping a single
parameter list in memory at a time.

TestNG also supports another critical feature that helps to avoid excessive
memory utilization: it allows the use of custom test listeners to record detailed
information about executed tests, including the parameters used for testing and
the exception, if any, that caused the test to fail or be skipped. Thus, instead of
recording every test result in memory and processing that information at the end
of a test suite’s execution, as the previous version of JMLUnit does, we can record
test results to disk in a streaming fashion as the tests are executed, with as much

6 http://www.testng.org/
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detail as we choose. As distributed, TestNG does record every test execution in
memory—even if the default test listeners are disabled—in order to present a
basic test report at the end of execution. However, with only minor changes to
the TestNG source code, we were able to eliminate this in-memory recording
while maintaining the ability to use other desirable TestNG features. With our
modified version of TestNG, we can run test suites of essentially arbitrary size
in a reasonable amount of memory, provided that there is sufficient disk space
to log their results; we have successfully run hundreds of millions of tests using
less than 1 GB of Java heap space.

The switch from JUnit to TestNG as a test execution environment therefore
allows us to eliminate all the memory issues associated with JMLUnit. It also
removes the need for a custom test runner that understands meaningless tests,
because TestNG natively supports the concept of a skipped test; we simply record
the meaningless tests as skipped, by intercepting the appropriate JML assertion
errors and wrapping them in TestNG SkipExceptions. In addition, because
TestNG supports functionality such as dependencies among tests and multiple
forms of parallel testing, it provides a robust platform upon which to perform
future automated test generation experiments.

5 Comparison of JMLUnit and JMLUnitNG

We have run our current version of JMLUnitNG on two different sets of Java
classes. Both are relatively small; one is a small set of classes that implements
chess pieces and the other is a set of core classes from the Kiezen op Afstand
(KOA) Internet-based remote voting system [12] constructed for the Dutch gov-
ernment by the Security of Software group at Radboud University Nijmegen.

The chess piece classes are largely testable in isolation, though they have
a dependency on a Team class7 that is used to indicate whether each piece is
black or white and to enable the pieces to determine their legal directions of
movement. The piece classes, which are named for the pieces whose movements
they model, have methods that take no more than 3 parameters; the majority of
their methods take fewer than 2 parameters. The piece classes tested here share
a common interface (Piece) but do not take advantage of inheritance to factor
out the common functionality of chess pieces into a shared parent class; thus,
they all have similar structure.

The KOA classes, by contrast, are highly interrelated, with some taking in-
stances of multiple others as constructor and method parameters. They also
have a significantly greater number of method parameters on average, making
the combinatorial explosion of test method calls more pronounced. The classes
in the KOA system model components of the Dutch election system: District
represents a voting district; KiesKring represents a kieskring, which is a region
containing a collection of voting districts that are counted together for the pur-
pose of proportional representation in the lower house of the Dutch parliament;

7 This is a class in the chess code tested here, because we are working with a version
of JML that only handles Java 1.4 constructs; it would be an enum in modern Java.



Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Candidate 197 0 0 0 0
CandidateList 659 0 0 0 0
District 98 13 74 13.3 75.5
KiesKring 299 29 207 9.7 69.2
KiesLijst 431 45 173 10.4 40.1
VoteSet 745 0 0 0 0

Total 2429 87 454 3.6 18.7

Table 1. Results for KOA classes with JMLUnit (Orig) and JMLUnitNG (New)

Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Bishop 367 0 247 0 67.3
King 390 0 270 0 69.2
Knight 362 0 242 0 66.9
Pawn 403 0 273 0 67.7
Queen 368 0 248 0 67.4
Rook 360 0 240 0 66.7
Team 10 1 8 9.1 80

Total 2260 1 1528 0 67.6

Table 2. Results for Chess classes with JMLUnit (Orig) and JMLUnitNG (New)

Candidate stores information about a single candidate for office; KiesLijst

stores a list of candidates for a particular kieskring; and CandidateList stores
information about the entire set of candidates, across all regions, for a single
election.

We use EMMA,8 a code coverage tool for Java, to measure the coverage of
the tests generated by JMLUnit and JMLUnitNG. EMMA measures coverage
in terms of basic blocks, which are sequences of bytecode instructions without
any jumps or jump targets, rather than in terms of lines of source code. When a
Java program is run under EMMA, it generates a report that lists all the classes
loaded by the virtual machine, their methods, the number of basic blocks in each
method, and the number of those blocks that were executed during the run.

Tables 1 and 2 show the block coverage provided by JMLUnit and JML-
UnitNG, based on the data in the EMMA reports. Both sets of generated tests
were run with default settings and without modifying the generated code. For
the chess classes, 165 tests were automatically generated by JMLUnit and 7,108
were automatically generated by JMLUnitNG; for the KOA classes, 686 tests
were automatically generated by JMLUnit and 3,017 were automatically gener-
ated by JMLUnitNG. The disparity—JMLUnitNG generates fewer tests for the
KOA classes than for the chess classes, while JMLUnit does the opposite—is

8 http://emma.sourceforge.net
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Class Total Blocks Covered Blocks % Covered

Candidate 197 118 59.9
CandidateList 659 74 11.23
District 98 75 76.5
KiesKring 299 239 79.9
KiesLijst 431 266 61.7
VoteSet 745 167 22.4

Total 2429 939 38.7

Table 3. Results for KOA classes with JMLUnitNG and provided primitive data values

due to the fact that the constructors for the chess classes have significantly less
restrictive preconditions; while the default test data generate many possible pa-
rameter lists for constructing test objects, significantly fewer of those satisfy the
constructor preconditions for the KOA tests than for the chess tests.

Since JMLUnit has no way to construct objects on which to call test methods,
it fails to provide any test coverage other than for object constructors that take
only primitive values (or accept null, which JMLUnit uses as a default). By
contrast, JMLUnitNG covers significant fractions of the systems under test with
no developer intervention.

Adding primitive and String data to the JMLUnit tests, for either set of
classes, does not improve their coverage because JMLUnit still does not con-
struct test objects. Adding primitive and String data to the JMLUnitNG chess
tests does not improve the coverage significantly, because the default values for
the primitive types are sufficient to test nearly everything that can be tested by
JMLUnitNG; the polymorphism limitation mentioned in Section 4.1 prevents
JMLUnitNG from automatically generating useful tests for the methods that
handle capturing of pieces, which take parameters of type Piece (an interface
shared by all the pieces), or for methods like equals. However, adding primitive
and String data for the JMLUnitNG KOA tests has a significant impact, as the
added data can be chosen to satisfy constructor preconditions that are not sat-
isfied by the default data. Table 3 shows that block coverage more than doubled
when a few carefully-selected primitive and String data values were added to
the test data set; JMLUnitNG generated 1,351,351 tests for that run.

The test runs with default data ran in less than 10 seconds each; however,
the JMLUnitNG test run with added data required approximately 3 hours to
complete the 1,351,351 tests. We believe that the execution time can be dra-
matically improved through optimization of the reflective test data generation
process, as well as by parallelizing the test executions. However, the completion
of a million-test run is itself a dramatic improvement over the original JMLUnit
tool; it would have exhausted the available 16 GB of Java heap space during the
attempt and generated no results, while JMLUnitNG used less than 768 MB of
heap space and reported that all the tests passed.



6 Related Work

As previously mentioned, considerable research has been (and continues to be)
devoted to automatic test generation, most of it to the generation of test data
rather than test oracles. We have insufficient space here to give even a complete
overview of the current state of the art. We thus describe only the most closely
related of the existing automated test generation systems.

Test oracles can be derived from a behavioral specification of the SUT, such
as structured documentation [15], a formal model [9], or inline specification state-
ments written in languages such as JML (as we have used here). Regardless of
the type of behavioral specification, the basic idea is the same as we have em-
ployed: a test oracle is generated for each unit based on the specification of that
unit; tests that are run with data that would violate the unit’s requirements
(preconditions, assumptions) are ignored, and a test is considered to pass if the
unit’s specification is not violated by the test execution.

Most automated test data generation falls into one or more of the following
categories: randomness-based, where test data are generated randomly; optimi-
zation-based, where test data are optimized over multiple test runs based on
coverage observations; code-driven symbolic execution-based, where symbolic ex-
ecution [11] is used to compute test data that will exercise particular execution
paths of the SUT; specification- or model-based, where constraint solving is used
to generate test data based on a logical analysis of a specification or model of
the SUT; and verification-based, where test cases are generated from attempts to
formally verify the SUT. The latter two are most closely related to our approach.

Specification- and model-based test data generation methods, implemented
in tools such as BZ-TT [1], JML-Testing-Tools [3] and UniTesK [4], use a log-
ical analysis to compute partitions of the variables that fulfill the explicit case
distinctions present in a formal specification or model of the SUT. Once the
partitions have been computed, constraint solving or model finding is used to
find concrete test data in each partition.

Verification-based test data generation (hereafter, VBT ) is a recent develop-
ment, based on the idea of generating test cases from attempts to verify systems
with formal specifications [10]. VBT uses symbolic execution, with termination
being enforced by a bound on the number of times loops and recursions are
unwound; it differs from code-driven symbolic execution-based methods by gen-
erating test data from path condition formulae encountered at termination nodes
in the symbolic execution tree. The VBT approach works well for code with sim-
ple branching statements (if...then, switch/case, constant-bounded loops) but
not as well for code with generalized loops or recursion, because only a lim-
ited number of loop iterations and only a limited recursion depth can be dealt
with. VBT has been implemented in the KeY verification system [2] and in
Kiasan/KUnit [8]. A uniform framework for verification and testing has been
formalized in HOL/Isabelle for a small target language [5].

JMLUnitNG is complementary to, not competitive with, the test generation
methods and tools described above. While these methods and tools are relatively
heavyweight, using automated theorem provers, constraint solvers and symbolic



execution engines, JMLUnitNG is extremely lightweight, using only the TestNG
framework and Java’s reflection mechanism. It is an instant replacement (and
improvement) for developers who already use JMLUnit, and a one-step addi-
tion to the software build process for developers who use JML but have not yet
adopted JMLUnit. It is easy to use, and the principles underlying its operation
are easy for typical software developers and students to understand regardless of
their level of experience with JML specifications and tools. For more advanced
developers, it can also be used in conjunction with more heavyweight methods;
rather than manually creating context-dependent test data sets for the JML-
UnitNG test oracles, or relying solely on the default data sets and reflective
data generation, developers can create their data sets using one or more other
test data generation tools.

7 Conclusion

We have presented JMLUnitNG, a new unit test generation and execution frame-
work inspired by the original JMLUnit tool and based on a modified version of
the TestNG unit testing framework for Java. The current implementation has
some shortcomings; as a proof of concept, it was directly evolved from the origi-
nal JMLUnit and is based on the Common JML tool suite, so it cannot be used
on code that contains modern Java constructs such as generic types. It does not
contain solutions for two of the issues—cyclic dependencies and polymorphism—
discussed in Section 4.1. When generating test data, it cannot reflectively con-
struct instances of classes that have no public constructors, such as those that
rely on factory methods. We have already designed and partially implemented a
new version of the tool, independent of the Common JML tool suite, to address
all these issues.

Despite these shortcomings, we consider our initial experiments with JML-
UnitNG to be quite successful; the ability to generate and rapidly execute mil-
lions of tests and the automatic generation of test data of non-primitive types
are substantial improvements over the functionality provided by the original
JMLUnit, and the resulting benefits can be easily realized in any project that
currently uses JMLUnit for specification-based testing. Moreover, JMLUnitNG
provides significant new developer flexibility, including the ability to specify
context-dependent test data. As such, it is not only an improvement over the
original JMLUnit, but also a sound foundation for future test data generation
experiments.
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