
Building Reliable Software
with

Applied Formal Methods
A Brief Overview

Daniel M. Zimmerman
Institute of Technology

University of Washington Tacoma

Outline

• Applied Formal Methods

• Correctness and the Java Modeling Language

• Unit Testing with JML-JUnit

• Current Work

Applied Formal Methods

• Formal methods are mathematical
techniques for building verifiably-correct
software systems.

• Applied formal methods is the
creation and evaluation of techniques and
tools that make formal methods accessible
and useful to developers who may not know
all the mathematics involved.

Correctness

• A correct software system is one that
does what it’s supposed to.

Correctness

• A correct software system is one that
does what it’s supposed to.

• Correctness is always relative!

Correctness

• A correct software system is one that
does what it’s supposed to.

• Correctness is always relative!

• You need a specification of what a system
is supposed to do before you can evaluate
its correctness.

Specifications

• Specifications of software range in formality:

• informal - English documentation (e.g.,
“normal” comments in code)

• semi-formal - structured English
documentation (e.g., Javadoc)

• formal - annotations and assertions (e.g.,
assert statements and contracts)

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

• amount is bigger than the balance?

Informal Specifications
/* Deduct some cash from this account and
 return how much money is left. */

public int debit(int amount)

• What happens when:

• amount is negative?

• amount is bigger than the balance?

• Is the balance changed when the call fails?

Semi-Formal Specs
/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

Semi-Formal Specs
/** Debit this account.
 * @param amount the amount to debit.
 * <code>amount</code> must be
 * non-negative.
 * @result the balance of this account
 * after the debit successfully occurs.
 */
 public int debit(int amount)

• Many of the same questions arise even
though the documentation is much clearer.

Formal Specifications

/** Debit this account.
 * @param amount the amount to debit.
 * @result the resulting balance.
 */
/*@ requires amount >= 0;
 @ ensures balance == \old(balance - amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount)

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Writing and Calling
Methods Incorrectly

/* Deduct some cash from this account and
 return how much money is left. */
 public int debit(int amount) {
 if (amount < 0) throw NDE(amount);
 if (balance < amount)
 throw NBE(balance);
 ...
 }

HORRIBLE!
try {
 b = debit(a);
 if (b < 0) throw NBE();
} catch (Exception e) {
 System.exit(-1);
}

Calling Methods Correctly
/*@ requires amount >= 0;
 @ ensures balance == \old(balance - amount) &&
 @ \result == balance;
 @*/
 public int debit(int amount) {
 ...all conditionals are gone!
 ...
 }

if (debit_amount < 0)
 handle_bad_debit(debit_amount);
else
 resulting_balance = debit(debit_amount);

Design by Contract

• Contracts are a key concept in robust
software design and construction.

• Precondition: an assertion that must be
true before a method can be called

• Postcondition: an assertion that is
guaranteed to be true when a method
returns.

• Invariant: an assertion that is true of an
object at observable states.

Design by Contract
Example

’
.

Partial Class Features

• queries

• spouse? single?

• commands

• marry! divorce!

• constraints

• at most one spouse is allowed

• spouse’s spouse must be this person

Partial Class Sketch
 Citizen my_spouse;
 /*@ invariant (my_spouse != null) ==>
 @ my_spouse.my_spouse == this;
 @*/

 Citizen spouse() { returns spouse; }
 boolean single() { returns spouse == null; }

 //@ requires single() && new_spouse != null;
 //@ ensures !single() && spouse() == new_spouse;
 void marry(Citizen new_spouse)
 { my_spouse = new_spouse; }

 //@ requires !single();
 //@ ensures single();
 void divorce() { my_spouse = null; }

Java Modeling Language

• The contracts we just saw were written in
the Java Modeling Language (JML).

• JML is a notation for formally specifying the
behavior and interface of Java classes and
methods.

• Originally developed by Gary T. Leavens
(Iowa State, now U. Central Florida) and
others, now worked on by researchers
worldwide (including me!).

Java Modeling Language

• JML enables Design by Contract and
runtime assertion checking, but also
full logical models of Java classes.

• Why logical models? Often, class behavior
can be specified in one simple way, which has
many possible implementations.

Logical Models

• Consider a basic (unprioritized) queue data
structure.

• enqueue and dequeue operations mean the
same thing, regardless of the implementation
of the queue - this is the logical model.

• Model checking compares a logical
model to an implementation.

• JML enables the specification of logical
models that can be used by model checkers.

Tools That Use JML

• Many tools understand JML.

• Obviously I can’t talk about them all here,
but these are a few...

• ESC/Java2 (University College Dublin)

• Daikon (MIT)

• Sireum/Kiasan (Kansas State)

ESC/Java2
• ESC/Java2 is a static checker - it

performs analysis of source code without
running it.

• Other static checkers include FindBugs
and CheckStyle, which check for common
errors and style issues.

• ESC/Java2 uses an automated theorem
prover to (try to) demonstrate that a
particular piece of Java code is correct with
respect to its JML specification.

ESC/Java2

• ESC/Java2 will typically say “this piece of
code definitely fulfills its specification”, or
“this piece of code may violate its
specification”.

• Occasionally, it will say “I don’t know.”

• ESC/Java2 also detects some common
programming errors (null pointer
exceptions, array indices out of bounds).

Daikon

• Daikon is an invariant detector.

• It runs a program, observes what the
program does, and reports properties that
were true throughout the execution.

• Helpful for adding specifications to legacy
code that lacks them, or for discovering
potentially overlooked invariants!

Sireum/Kiasan

• Part of the Sireum set of tools.

• Kiasan is a JML-based automatic verification
and test case generation tool.

• It can detect various possible runtime
problems, like ESC/Java2.

• It uses symbolic execution to analyze
the possible behaviors of code and generate
tests to exercise them.

More Tools

• There are many more tools out there that
understand JML, and even more under
development.

• Many of these tools are used in developing
real-world systems.

• A new standard for a JML intermediate
representation to make tool development
easier in the future is also in the works.

Unit Testing

• Unit testing has been an important
validation technique in software
development for many years.

• A developer designs a set, or suite, of unit
tests.

• Each test gives some input to the system and
checks to see if it gets the correct output
from the system.

Unit Testing Issues

• Devising good tests is hard.

• It’s easy for developers to miss things that
need testing.

• Handwritten tests can also have bugs, so if a
test fails, it’s not necessarily telling you what
you think it is!

JML-JUnit

• JML-JUnit is a unit test generator for
code specified with JML.

• Uses the preconditions and postconditions
of methods as test oracles.

• Requires the developer to come up with a
set of test data, but not to write any test
code.

JML and JML-JUnit
Demo

JML-JUnit

• JML-JUnit is nice, but has several
shortcomings:

JML-JUnit

• JML-JUnit is nice, but has several
shortcomings:

• Generated tests are only as good as the
specs (not much to do about this one).

JML-JUnit

• JML-JUnit is nice, but has several
shortcomings:

• Generated tests are only as good as the
specs (not much to do about this one).

• Only calls to single methods, not
sequences of methods, are tested.

JML-JUnit

• JML-JUnit is nice, but has several
shortcomings:

• Generated tests are only as good as the
specs (not much to do about this one).

• Only calls to single methods, not
sequences of methods, are tested.

• Developer still needs to come up with the
test data.

Current Projects

• Semantics- and Specification-Aware Unit Testing

• Distributed Unit Testing

• OpenJML

• Verified Gaming

Semantics- and Specification-
Aware Unit Testing

• Extending JML-JUnit to address the
shortcomings noted previously (testing
sequences of method calls, automatically
generating test data).

• Using the semantics of Java and the JML
specifications of the system under test to
determine test data and the parts of the
system to test with them.

Distributed Unit Testing

• Comprehensive unit testing takes time,
especially if one is generating large unit test
suites (as might arise from the previous
project).

• Automatically distributing the unit tests
across multiple, networked machines allows
them to be run more efficiently.

• Currently, a number of machines at UWT,
Kansas State University, and University
College Dublin form such a network.

OpenJML

• Helping to develop the next generation of JML
tools - because the current generation only
handles the Java language as it existed up to
late 2004.

• OpenJML is a new JML compiler and
associated tool set built atop OpenJDK,
Sun’s open-source version of Java.

Verified Gaming

• A teaching-related project, in conjunction
with University College Dublin.

• Developing Java versions of classic games
with verification-centric software
engineering methods and tools, as a way of
teaching formal methods.

• UWT undergrads have worked on Space
Invaders, Frogger, and Pac-Man; I have
worked on Tetris.

Questions?

